Category Archives: What you need to know?

Adopting SIEM – What you need to know?


SIEM stands for Security Information and Event Management”

Oh wait, I have heard of SIM, I have heard of SEM, what is this SIEM??.
Originally, the Security Information Management (SIM) and Security Event Management (SEM) systems were two different technologies performing similar but distinct functions. Gartner in 2005, coined the term SIEM to encompass both. As the name suggests, It is nothing but a collection of tools and technologies to manage Incident and Events pertaining to Security alone. Some of the tell-tale capabilities of a typical SIEM platform are:

  1. Collect Logs from various Log Sources/Devices
  2. Store these logs for a decent amount of time
  3. Provide Fast Search/Retrieval capabilities
  4. Provide meaningful interpretation of Log received
  5. Provide capabilities to correlate between logs of different devices
  6. Basic Ticketing/Alerting capabilities.

The first 4 points are typical of a SIM and the remaining 2 are typical of a SEM.
Any tool that does all of these is a SIEM. There are more than 50 different products that cater to the SIEM space. Just like any other product, they cater to various market segments at various price points.
If you Google for SIEM reviews you would get a lot of information on various products. In my experience, I have worked with at least 4 SIEM vendors. Each one of them have their own pros and cons. Comparing a product in a DEMO and comparing it after use are two different things. So, in this blog post, I am going to highlight few things as “What you need to know” when you are planning to adopt SIEM technology

  1. Have a defined Logging process in your environment. This is very crucial because a SIEM is useless without a good Logging Program. This not only helps in making the SIEM implementation easier, but also helps in getting a measure of the volume you are dealing with. In my experience, often times, despite having an Industry leading SIEM, the log Management made it look pedestrian and a waste of money.
  2. Every SIEM vendor has something called as Collector/Connector/Receiver/Agent that collects logs from the devices and converts them to their proprietary format. This conversion or parsing as we call is important for the product developers to store data in a format they can understand and process quickly. Most of the vendors offer something of a Custom Collector/Parser development for their “unsupported” log sources. This costs money, skills in-house and may require regular maintenance. Hence Native Parsing Support for Log Sources is better. Establish this before you move ahead with SIEM implementations. Either source a in-house resource to help build and manage such customizations or spend more money to get the vendor to do it.
  3. Identify primary focus areas from an Organizational perspective. This will help you configure your SIEM solutions appropriately. These focus areas should be broadly classified and then expanded to the ground level. For example, if your requirement is compliance, start with control requirements, see what logs need to be collected to fulfill them, see how integration needs to be done, see what needs to be reported, alerted, retained, etc.
  4. Get a dedicated SIEM administrator or rather train someone in-house to be that person. This is very important because, in my experience I have always felt that SIEM is as good as the administrator is. Without proper maintenance and care, it will decay over time. If you really need to generate value out of it, manage it well. By managing a SIEM I mean not only the system itself but also the ecosystem it resides in.
  5. Understand that SIEM alone cannot solve all your Security Problems. It is NOT A MAGIC WAND. If setup and configured correctly, a SIEM can at best point you in the right direction, a direction where you can identify and fix several security issues in your enterprise thereby strengthening it. So, be prepared to have a Response/Remediation team that will investigate the alerts generated and take appropriate action.
  6. Correlation is a vital part of SIEM offerings. Before Adopting SIEM, make sure you understand and possibly catalog the various Attack Vectors, Threat Scenarios you would want looked at for correlation in your organization. This will give a fair direction for the basic rules you would put in place to start with. Once you are comfortable and start seeing the various alerts generated, you can play around and experiment more. In my experience, start with built-in rules, understand them, investigate them, tune them and then slowly start building your own content. For more details on the various rules available in SIEM Look at Rules Rule in SIEM Kingdom
  7. Architecture wise, make sure your SIEM solutions are in tandem with your Logging solutions. Also, build your SIEM as modular as possible thereby making upgrades, technology refresh etc seamless.
  8. Don’t forget the filtering aspect. Correlation Engines will perform faster and will get you better results if they are attacking a smaller set of “known bad” logs rather than all. This is crucial in large enterprises as the Log Volume can easily overwhelm the SIEM systems. Note: Many SIEM tools have limitations in the number of events they can process. This is denoted in Events Per Second (EPS). Even though the vendors advertise several thousands, an effective correlation system can have only around 2000 – 5000 EPS tops. Anything more will make your system painstakingly slow. So understand and work through this. Look at my posts What and How much to Collect and High Log Volume – What to Filter and What to Keep? to get more information on how to log, what to log and what to filter.
  9. Remember, more processing layers, less EPS. This means that the Log Collection layer will have more EPS processing capability than the Correlation engine and so on. Visualize it as a pyramid with the Log Collection at the Base and the Correlation at the top
  10. Last but not the least, “Stay Alert and Eager. The Logs Don’t Lie”

Hope this post helped you in getting a fair idea of SIEM technologies. I have worked on HP ArcSight, Symantec SSIM, Novell E-Sentinel. If you need details about them in terms of practical setup, configuration, architecture etc, shout out and I will help as much as possible.
 Save as PDF

What is TOR? How can I Un-TOR?


TOR or The Onion Router is one of the widely used Anonymity Networks in the “Wide World Web”. Before we understand what TOR Networks are, its important to understand the basic technology involved. This is key to defining a Detection/Prevention/Control strategy in Enterprise Networks. The basic technology behind TOR is Onion Routing.
Onion routing is a technique for anonymous communications over a Network. Data Packets are repeatedly encrypted and then sent through several onion routers. Like someone unpeeling an Onion, each onion router removes a layer of encryption to uncover routing instructions, and sends the message to the next router where this is repeated. Using this approach means each node in the chain is ideally aware of only 2 other nodes:

  1. The preceding node from which the onion was transmitted.
  2. The proceeding node to which the onion should next be transmitted.

Now how is it achieved? Just like in a Routed Network, there is a master node in Onion Network that maintains the list of TOR Nodes and their Public Keys (Remember TOR uses Asymmetric Crypto). Whenever a request is made, this master node crafts the data packet in layers. Outermost Layer of encryption will be opened by the First Onion Router and the Innermost encryption will be opened by the Last Onion Router. The peeling away of each layer of the onion makes it difficult or impossible to track the onion and hence the name Onion Routing.

Some things to understand about TOR in addition to the basic technology is how it works and how hard it makes life for Security Professionals to identify and control it.

  • Firstly, TOR Nodes have to be public. Their IPs cannot be hidden. Here is a sample list of TOR IP Addresses. This could potentially serve as a blacklisting source in Enterprise Firewalls/IPS/IDS/Proxy.
  • TOR Nodes can use Bridges to connect to TOR Public IPs. Bridges are nothing but Relay IP addresses that help a client connect to the TOR Network. Bridge/Relay IP Addresses make it difficult to identify TOR entry and Exit nodes. Any user can install “Vidalia” and set up a Bridge relay to help several TOR users (who have TOR Public nodes blocked by ISP or Enterprise). These bridge IP addresses are generated randomly per Request Received. There are several such Relays and they are hidden from Public IP Pool.
  • TOR traffic is encrypted and hence detection using IDS/IPS will be difficult
  • TOR Clients have the capability to use SOCKS to set up connections and hence differentiating SOCKS doing TOR and SOCKS not doing TOR is a great challenge.
  • Several Torrent softwares have the capability to do native TOR communication. Identifying such Software Machines will be a challenge in an Enterprise having a distributed setup, Remote Access Setup etc.

Now that we know what TOR is, Don’t we need to know how to control this in the Network?
Analysis and Control of TOR can be done as follows:

1. Blacklist all known IP addresses – This essentially is not fool-proof for the mentioned reasons above with Bridging.
2. Custom Script to pool Bridge IPs and keep adding the same to IP Blacklist. This can regularly query the Bridge Mail ID to get the random list of Bridge IP addresses.
3. If your enterprise is using HTTP Proxies only, then SOCKS Protocol should not be available in your network. Identifying a user doing SOCKS can help identify possible TOR clients.
4. P2P traffic should be blocked in the enterprise as P2P and TOR go hand in hand. The key things to look for is, Browser Plugins for P2P that mask behind HTTP and HTTPS Requests. This is quite an interesting development as far as Identifying P2P Users in your network is concerned.
5. If Traffic Analysis, Flow Analysis is available in your network, you can profile your Network segments for all the Application protocols in use in your network. Unless and until you are using TLS/IPSEC through out your network, chances are that very less amount of encrypted traffic is found. Filtering through the Chaff on known Encrypted traffic should narrow you down to a list of machines that do encrypted traffic and are not supposed to or not normal.

I welcome the readers to share your experience on working with TOR and let me know of any other method of identifying and analysis TOR in Enterprise networks.